Middle school students still like those fun seasonal activities! Many years ago (I have no idea how many) I used this pattern coloring activity with my middleschoolers. I don't remember where the idea came from, and I had even forgotten that I ever used it! However, I was looking through an old "November" file to find some ideas for a fun activity for a sub day, and found the tracers and examples in my file.
Once I found it, I DID remember that the kids used to really enjoy this activity. They had fun creating the patterns and deciding what colors to include. So, I gathered materials (graph paper, tracers, colored pencils, thin black markers, construction paper) and left them for the sub, with these directions:
0 Comments
Use Task Cards in a New Way, to Provide
SelfDifferentiation and Promote Discussion
If you're like me (and so many other teachers), you know that task cards can be used in sooo many ways. From centers to Footloose (or Scoot) to exit tickets to entrance tickets to miniquizzes  the list is long!
However, if you're like me in other ways, you're always looking for something new and different. This year, my "new and different" was to start using task cards to play Truth or Dare in math and language arts classes! To use them this way, some of the task/question cards need to be written as True or False questions, which can make the questions just a little trickier and lead to more indepth thinking. I allow students to discuss the answers after the "official" answer is given, and depending on the question, students end up having great discussions! The Dare questions are a little harder, require more calculation or perhaps more verbal explanation than the Truth cards, and so they are worth more points. (Truth cards are worth one point while Dare cards are worth 2 or 3  I've even thrown in a 4pointer here and there.) What makes this game fun? Well, it's a little different  with the "dare" part in there. Students also don't always know how many points they're going to get to try, so that offers a little excitement. I like the fact that students can choose the type of question they want, so it allows for some selfdetermined differentiation...the choice gives the more hesitant students the chance to feel a little more confident. After creating several paper and pencil Truth or Dare games, my wonderful friend Leah (Secondary Resources for Social Studies & English) suggested that I make a Google classroom version, and I'm so glad I did! It's so easy to use and there's little to no copying needed! (A little copying if I want students to write their work/answers on paper; no copying if I want to share the Truth or Dare game in Edit mode and have students type their answers.) Check out the 2minute video below  it shows how the game works in Edit mode (there are one or two "slow to refresh" spots in the video, so please don't think it's not working:)
Check out this video to learn more about the way the game is played with paper/pencil  in any subject!
I hope you can use this game ideait can be used in any subject!
I'm really liking the math wheel idea, so I created a new wheel for fraction, decimal percent conversions:)
How to use this resource (this information is also in the free download): Around the outside of the wheel are the different conversion headings – you can use the wheel to introduce the conversions, filling in just the ones you are covering each day. Or, you can use it to review all the conversions at once. In either case, the wheel can be kept in students’ notebooks as a reference/study tool. 1) I like to begin with decimal to percent and percent to decimal. In the arrows in these sections, you’ll see x 100 and ÷ 100. It think it’s important that students understand that these are the operations being used for these conversions before giving them a shortcut, so I let them use calculators to complete the examples. Once the examples are complete, I ask the students to look for the pattern – what happens to the decimal point in each of these cases? We decide on the “shortcut” rules together and then write them at the bottom of those sections. 2) The fraction to percent and fraction to decimal sections have the rules written already, so the examples just need to be completed. I always relate fraction to percent to students grades. By the time we get to this topic during the year, students have been figuring out their grades for months (I never write their percentages on their assessments – they need to calculate them). They know how to find their percentage if their quiz grade was 6/8 or their test was 48/52. However, sometimes they need a reminder that this official fraction to percent “rule” is the same thing they’ve been doing for months! I have them write a little reminder in that section  “just like test grades!” 3) For percent to fraction, students need to remember that percent means “out of 100,” so the percent number will always go over 100. Then they must reduce. 4) I find that decimal to fraction is sometimes tricky for students. When they have trouble, I ask them to read the decimal number according to place value (“How do you say this number, using tenths, hundredths, or thousandths, etc.?”). Once they speak it, they know how to write the fraction – 0.27 is 27 hundredths, which is 27/100. After completing the examples, we discuss the idea that the denominator will be whatever the last decimal place is (10, 100, 1000, etc.) and the numerator will be the digits in the decimal number. We write this rule as simply as possible. 5) Students then complete the 10 problems around the page. Above each number is the conversion to complete (F to P, P to D, etc.) They can then color the rest of the wheel background. I had a great time coloring my answer key! These could make a fun decoration as well:) I hope you can use it!! Do your middle school math students like to play math games? Mine do, but over the past few years I've noticed that many of them aren't familiar with some of the games I played when I was a kid, like Yahtzee, for example. So, as we started working on converting fractions and decimals, I decided to create a game to make practicing the conversions more fun AND give them some more game experience! I based it on the idea of Yahtzee:) Here's how it works: Students roll four dice, and pair the dice up to create "target numbers" that are either decimals or whole numbers.
For example, a student rolls 1, 2, 4, and 6. From these dice, the student may create any two of the following decimal (or whole) numbers:
½ = 0.5 4/1 = 4 ¼ = 0.25 4/2 = 2 1/6 = 0.1666... 4/6 = 0.666... 2/1 = 2 6/1 = 6 2/4 = 0.5 6/2 = 3 2/6 = 0.333... 6/4 = 1.5 Once a player has chosen two target numbers, he or she finds the score by adding the dice that were used for each decimal (or whole number). If the player chose to use 1 and 4 to get 0.25, he or she adds 1 + 4 for a sum of 5 to place in the score column. If the second choice used 2 and 6, to equal either 0.333...or 3, then sum of 8 would go in the appropriate column as the score. On the next roll, this student rolls 1, 1, 3, and 5. This student can pair 1 and 1, to get 1, and pair 3 and 5 to get either 0.6 or 1.666... The score for 1 is 2 (1 + 1) and the score for 0.6 (or 1.666) is 8 (3 + 5). In many cases, students' scores will be the same, but some of the decimals can be found with different combinations of numbers (1 and 3 = 0.333..., and so do 2 and 6, so students could have a score of either 4 or 8). Some students will notice this sum difference and go for the combination that will give them the higher score....bringing in the possibility of using some strategy, for those higher level thinkers. The students have really enjoyed playing this game. They do need a few examples at the start, to understand exactly how the game works, so if you decide to try the game, be prepared to go through a few turns together.
You can create a score sheet like this on your own, or go to TPT and use what I've created. Detailed instructions are included, and a complete answer key of highest and lowest possible scores for each target number are included as well. This is handy to quickly check student score cards as you check in on their games.
If you give it a try, please let me know how it goes!
Have I mentioned that I love Jo Boaler’s books and site, Youcubed.org? Well, I do! She shares so much fantastic research and so many wonderful ideas.
So, I was reading her book Mathematical Mindsets this week, and read about the “array game” (called How Close to 100), which I’ve seen all over Pinterest and thought was very cool. I tried it with my classes last year during a little bit of down time, and they liked it. I hadn't really thought of using it this year, but last week I noticed the baggie of polyhedral dice that I've had for a looooong time and thought it would be cool to use the dodecahedron dice for the array game. With these dice, the students could use numbers up to 12, rather than 6.
To set up their game, students each outlined a 20 by 20 area on their own graph paper. They took turns rolling their dice and creating arrays to represent the multiplication problem they had rolled. It was very interesting to observe the way students arranged their arrays. Some started in the corner and worked their way out, while others started on one side and worked their way across. Some made the arrays touch, if possible, while others left a row between each one. Some just drew their first few arrays anywhere and then discovered that they didn't have a lot of room to fit additional ones. The "winner" was the student with the fewest number of boxes left (some did get to zero left). The students really had fun with this!
Of course, some finished their games earlier than others. In these cases, I asked students to create arrays that used different numbers than the numbers they rolled, but represented the same area. For example, if they rolled 12 and 5, their arrays could be 10 by 6, 15 by 4, or 20 by 3 (not 30 by 2, we discussed, because the grid is only 20 by 20). If they rolled a number that couldn't be represented by a wholenumber array, they could then use an irregular shape, or a triangle  anything they could find the area of. It was interesting to see how some students got stumped when they tried to draw an irregular shape to represent a number like 81.
Most students enjoyed this twist (we continued it the next day so they all got to play this version), but a few complained that it made their heads hurt! That's ok...I know they were really thinking and growing mathematically! The next extension for early finishers (only a few) was to use the icosahedron (20sided) dice, and have students create area models to cover their grids and find the answer to the multiplication problems. This required a larger grid, so I had them tape 2 pieces of graph paper together and create 20 by 40 grids. Using the icosahedron dice gave a mix of 1digit by 1digit, 1 by 2digit, and 2 by 2digit problems to model and solve. Most students didn't get very far with this before we ran out of time, but I think this is a great way to them to visualize what multiplying by a twodigit number means. I'd like to revisit this one! I'm so glad I thought about using those polyhedral dice! Have you used polyhedral dice in your math classroom? If so, please share how!
Using the Date to Encourage
More Math Thinking
2) The other way I used the dates was to write the date so that students have to solve an expression for each number in the date.
It's been fun to see some students writing these in the corner of their notebooks during class! Others have asked to write their equations or expressions on the board during the last period of the day. What I love about these ideas are that they are quick, can be done at any time (beginning of class, finished early time, closing of class, or in homeroom) and they help kids to expand their number sense and use some "out of the box" thinking. The "date as an expression" idea can also be expanded to challenge students: students can create their own expressions, students can solve the expressions (using the bar as a division sign  a student did this on his own one day!), and if you happen to make a "mistake," students can find it correct it!
I also look at the datewriting as a way to introduce notation my students haven't seen before, like the cube root, as well as reinforcing some concepts, like exponents. I don't know about your students, but mine often forget that 2 cubed means 2 x 2 x 2, not 2 x 3. Using the exponents in the date keeps bringing that concept back for review.
Update: I've started posting math dates at the beginning of every week on Instagram (always on Instagram) and Facebook (most weeks on FB), so if you'd like to use them, I hope you'll follow me on one of those platforms (if you aren't already).
Another update: I've created Math Dates resources for you to use throughout the year  these have been published by individual months and as a yearlong resource.
Although we're trying to get through quite a bit of material before our state testing, we took some time today to explore triangles. I'm sure many of you may have done this exploration, but it was quick and fun, so I thought I'd share:) We explored the idea that the sum of the two smaller sides of a triangle must be greater than the longest side. I cut straws of three different lengths, and asked students (in groups) to use the straws to make a triangle.
In my first math class, I used straws that were cut to 2 inches, 3 inches, and 5 inches. These lengths, using straws, made it almost possible to make a triangle, even though it shouldn't have been possible. So, I had to insist that their straw ends be lined up perfectly. I wanted to use 3, 5 and 2 inches to show that even these dimensions won't make a triangle, because the sum is equal to the longest side, not longer than it. So, after understanding how precise they had to be and that they couldn't leave segment parts sticking out of the end of the triangle, they came to the conclusion that it couldn't be done. Next I gave the groups a new set of straws that were cut to 3 inches, 3 inches, 5 inches. In this case, they were excited to make their triangles in about 30 seconds! We then discussed why the 3, 2, 5 didn't work and worked our way to "creating" the rule.
For my next classes, I trimmed the 3 inch straws to 2 inches, so that my next classes would have more difficulty getting the ends to meet. It was so funny to hear their comments  "This doesn't work," "Is this a trick question?" "This is impossible!" And then, their excitement when they made the 3, 3, 5 triangle  "We did it first!"
For my next classes, I trimmed the 3 inch straws to 2 inches, so that my next classes would have more difficulty getting the ends to meet. It was so funny to hear their comments  "This doesn't work," "Is this a trick question?" "This is impossible!" And then, their excitement when they made the 3, 3, 5 triangle  "We did it first!" I think (hope!) that they understood the concept....we'll see tomorrow when we go over their homework:) 
AuthorHi, I'm Ellie! I've been in education for 25 years, teaching all subject areas at both the elementary and middle school levels. Categories
All
