Teaching Decimal Operations
Rules for adding and subtracting decimals. Rules for multiplying and dividing decimals. Math 'rules' in general.
How often have you found that your middle school math students have been taught little tricks to remember math rules? How often do your math students make procedural mistakes even though they can remember the little tricks and they've learned the rules? I've taught decimal operations for more than 20 years, and I have seen, time and again, students who 'know' how to add and multiply decimals but then follow the wrong 'rule' for the operation they're completing. 6th grade math students know there are rules, but they end up asking themselves things like:
Students' Thinking About Decimal Operations
So, this year, as we approach the decimal unit, I've been feeling like I don't want to talk about the rules for where/how to put the decimal point.
I want to focus on logic. Today that feeling was reinforced when I asked my students to solve 35.2 + 7.489 and then explain why their answer made sense. Here are some of the answers and reasons (I didn't teach this yet, but they learned it last year):
A few correct answers, with reasons:
Of the 120 6th grade students in my math classes, only EIGHT said the answer made sense because:
Now, that doesn't mean that they didn't think about those things, but to the students, answers seemed to "make sense" when they followed the rules  even if the rules are remembered incorrectly; students got right and wrong answers and they all made sense because that's "how they learned it." What's the Point of Teaching Decimal Operation Rules?
So, what is the point of teaching rules?
Especially to those middle school students who are a little weaker in math  if they can't remember the right rule, they can't tell if their answer is reasonable! They need to develop their number sense. In the past, I've asked students to estimate the answer first, so they know if their answer is reasonable, and I have required them write these estimates on their tests. But we've also talked about the rules. I'm thinking that if I take the focus off the rules and put extra focus on the estimating/reasonable answer idea, students will be better able to identify reasonable answers and will feel less dependent on the rules. Multiplying and Dividing Decimals
I know the decimal multiplication and division logic will be more difficult.
Problems like 23.5 x 4.428, won't be as bad because there are whole numbers involved.
Multiplying 23.5 and 0.7 may be more confusing, but this will be the time to help students understand why the answer should be smaller than 23.5....but more than half of 23, since 0.7 is more than 0.5.
I'm sure division will be the most challenging, as far as determining reasonable answers, and I need to think about this one a bit more.
However, we have already done this activity I found on YouCubed "Too Big or too Small Maze Board." (I searched for this on the site recently and didn't see it there any more:/) In attempting to create the largest number possible (using a calculator to compute), many students have already made the discovery that dividing by a number less than one gave them a larger number, while multiplying by a number less than one gave them a smaller number. No rules were taught  they found this "secret" on their own. This will be great to reference and discuss when we begin working on the multiplication and division of decimals. We'll see how it goes! How do you teach decimal operations? Resources to teach and practice decimal operations:
To Read Next:
0 Comments

AuthorHey there! I'm Ellie  here to share math fun, best practices, and engaging, challenging, easyprep activities ideas! Archives
January 2022
